Discussion Problems for Math 180

Tuesday, October 14

1. (a) Does $\sin (x+y)=\sin (x)+\sin (y)$?
(b) Does $\sqrt{x^{2}+1}=x+1$?
(c) Does $\log (x+y)=\log (x)+\log (y)$?
(d) Does $\sqrt[3]{x+y}=\sqrt[3]{x}+\sqrt[3]{y}$?
(e) Does $\sin ^{-1}(x+y)=\sin ^{-1}(x)+\sin ^{-1}(y)$?
(f) Does $(x+y)^{4}=x^{4}+y^{4}$?
(g) If $f(x+y)=f(x)+f(y)$ and f is a continuous function, then $f(x)=\ldots$.
2. The function $c(t)$ has the following graph:

(a) What is the domain of $c(t)$?
(b) What is the range of $c(t)$?
(c) Sketch a graph of $c^{\prime}(t)$.
3. Find the minimum and maximum of $y=2 x^{3}-4 x+3$ on $[-2,2]$.
4. Find the minimum and maximum of $y=x^{5}-x+1$ on $[0,2]$.
5. Note: Sometimes we write $\exp (x)$ instead of e^{x} when the exponent is big enough to get messy. I hope you've seen this in class already, but if not, that's what this notation means.
The distribution of American men's heights, in inches, is (roughly) given by

$$
p(h)=\frac{2}{7 \sqrt{2 \pi}} \exp \left(\frac{-2}{49} h^{2}+\frac{40}{7} h-200\right)
$$

According to this model, which height is most common among American men?
6. Consider taking a number to its own power: for instance, $1^{1}=1$ and $2^{2}=4$, while

$$
\left(\frac{1}{2}\right)^{1 / 2}=\frac{1}{\sqrt{2}} \approx 0.7071
$$

and so on. Which positive number, taken to its own power, gives the smallest result?

